An introduction to Discrete Dynamical systems

G. Voyatzis Section of Astronomy, Astrophysics and Mechanics Dept of Physics, Aristotle University of Thessaloniki

> 26ο Θερινό Σχολείο – Συνέδριο «Δυναμικά Συστήματα και Πολυπλοκότητα» Εθνικό Μετσόβιο Πολυτεχνείο, 14/7/2019 – 20/7/2019

Bibliography

- R. Devaney, "A first course in chaotic dynamical systems", Addison-Wesley, 1992
- H.G. Schuster, "Deterministic Chaos An introduction", Physic-Verlag, 1984
- R.C. Hilborn, "Chaos and Nonlinear Dynamics. An introduction for Scientists and Enginneers", Oxford University Press, 1994
- S.H. Strogatz, "Nonlinear Dynamics and Chaos An introduction to Physics, Biology, Chemistry and Engineering", Westview press, 1994
- M.R.S. Kulenovic & O. Merino, "Discrete dynamical systems and Difference equations with Mathematica", Chapman&Hall, 2002
- Τ. Μπούντης, «Δυναμικά συστήματα και Χάος», εκδόσεις Παπασωτηρίου, 1995.
- Σ.Αναστασίου & Τ. Μπούντης, «Συνεχή και διακριτά δυναμικά συστήματα», Εκδόσεις Πνευματικός, 2019
- Γ.Βουγιατζής & Ε. Μελετλίδου, «Εισαγωγή στα μη-γραμμικά συστήματα», ηλεκτρονική έκδοση «Κάλλιπος», 2015 (http://users.auth.gr/voyatzis/NLDSYS/Voyatzis_Meletlidou.pdf)
- Λογισμικό : Mathematica

A simple example

(Peitgen & Richter, 1984)

Deposit Z_0 Rate of interest ε Period T

ή

$$Z_0, Z_1, Z_2, \dots$$
$$Z_{n+1} = (1 + \varepsilon)Z_n = (1 + \varepsilon)^{n+1}Z_0$$

Prohibition of unlimited wealth \Rightarrow reduction of the rate of interest proportional to Z_n

$$\varepsilon = \varepsilon_0 (1 - Z_n / Z_{\max})$$

$$Z_{n+1} = \varepsilon_0 (1 - Z_n / Z_{\max}) Z_n \implies Z_{n+1} = (1 + \varepsilon_0) (1 - x_n) Z_n$$
$$\frac{Z_n}{Z_{\max}} = \frac{1 + \varepsilon_0}{\varepsilon} x_n$$
$$r = 1 + \varepsilon_0$$

 $\overline{x_{n+1}} = rx_n(1-x_n) \qquad x_n = \frac{Z_n}{Z_{max}} \frac{\varepsilon_0}{1+\varepsilon_0}$

Logistic map

evolution

continuous system

$$\frac{dx}{dt} = rx(1-x)$$

evolution – population grow of mayflies

(P.F. Verhulst, 1847, R.M. May, 1976)

$$N_{n+1} = aN_n - rN_n^2 \quad (N_n > 0, \quad \forall n \rightarrow N_{\max} = a/r) \quad \stackrel{x=N/N_{\max}}{\rightarrow} \quad x_{n+1} = rx_n(1 - x_n)$$

"Perhaps we would all be better off, not only in research and teaching, but also in every day political and economical life, if more people would take into consideration **that simple dynamical systems do not necessarily lead to simple dynamical behavior**"

R.May, "Simple mathematical models with very complicated dynamics", Nature 261, 1976

A. 1D discrete maps

One Dimensional maps

 $x_{n+1} = f(x_n), \qquad x_i \in R, \quad n = 0, 1, 2, \dots$

The sequence of values $T = \{x_0, x_1, x_2,\}$ is a partial solution or a trajectory of the map that corresponds to the initial value x_0 .

Plane of the map (x_n, x_{n+1})

definitions

• The map is called **invertible** if there exist f^{-1} , i.e. $x_n = f^{-1}(x_{n+1})$ In this case $T = \{ ..., x_{-2}, x_{-1}, x_0, x_1, x_2, ... \}$

• An interval $I \subset R$ is **invariant** under the map if $\forall x \in I$, $f(x) \in I$

Graphical presentation (cobweb)

f(x) > x > 0.lim $x_n = \infty (n \rightarrow \infty)$

0 < f(x) < x.lim $x_n = 0 (n \rightarrow \infty)$

Special solutions

Equilibrium solution or fixed point

$$x_n = x^*, \qquad \forall n$$

$$f(x^*) - x^* = 0$$

Periodic orbits of period k

$$x_{n+k} = x_n, \quad \forall n \implies T^{(k)} = \{x_0, x_1, \dots, x_{k-1}, x_0, x_1, \dots\}$$

if $x^* \in T^{(k)} \implies x^* = f^k(x^*)$

 $f^{k}(x) = f(f(f...f(x)...)))$

$$f^k(x^*) - x^* = 0$$
 (*m*·*k* solutions)

Linear maps

• Constant coefficients

$$x_{n+1} = ax_n + b \qquad \Rightarrow \qquad x_n = \begin{cases} x_0 + bn & \text{if } a = 1\\ \left(x_0 - \frac{b}{1-a}\right)a^n + \frac{b}{1-a} & \text{if } a \neq 1 \end{cases}$$

• Variable Coefficients

$$x_{n+1} = a_n x_n + b_n \implies x_n = \left(\prod_{i=0}^{n-1} a_i\right) x_0 + \sum_{k=0}^{n-1} \left(\prod_{i=k+1}^{n-1} a_i\right) b_k$$

• Mathematica command : **RSolve**

Linear maps

$$x_{n+1} = \lambda x_n \quad (\lambda \in R) \qquad \Rightarrow \qquad x_n = \lambda^n x_0$$

Linearization near Fixed Points

map $x_{n+1} = f(x_n)$ Fixed point $x^* = f(x^*)$

$$x_{n} = x^{*} + \delta_{n}, \qquad x_{n+1} = x^{*} + \delta_{n+1}, \qquad \delta_{n} <<1 \qquad \forall n$$
$$x^{*} + \delta_{n+1} = f(x^{*} + \delta_{n}) = f(x^{*}) + \frac{df}{dx}\Big|_{x=x^{*}} \qquad \delta_{n} + O(\delta_{n}^{2}) \implies \delta_{n+1} = \lambda \delta_{n}, \qquad \lambda = \frac{df}{dx}\Big|_{x=x^{*}} = f'(x^{*})$$

Stability

$$\lambda = f'(x^*)$$

 $\lambda > 1$: x* is unstable $0 < \lambda < 1$: x* is stable

x* = attractor or sink x* = repeller or source

 $-1 < \lambda < 0$: x* is stable with reflection $\lambda < -1$: x* is unstable

- If $|\lambda|=1$ then x* is **parabolic** or **nonhyperbolic** (critical linear stability)
- If $|\lambda| \neq 1$ then x* is hyperbolic

Graphical presentation of stability

Stability in nonhyperbolic case

A. Case $f'(x^*)=1, f''(x^*)\neq 0$

- If f''(x*)<0 then x* is semi-stable from above
- If f''(x*)>0 then x* is semi-stable from below

B. Case $f'(x^*)=-1$, $f''(x^*)\neq 0$ [$s_f(x)=2 f'''(x)+3(f''(x))^2$]

- If s_f(x*)>0 then x* is **asymptotically stable**
- If $s_f(x^*) < 0$ then x^* is **unstable**

C. Case f'(x*)=1 or -1, f''(x*)=0
$$S_f(x) = \frac{f''(x)}{f'(x)} - \frac{3}{2} \left(\frac{f''(x)}{f'(x)}\right)^2$$

Schwarzian derivative

- If $S_f(x^*) < 0$ then x^* is asymptotically stable
- If $S_f(x^*)>0$ then x^* is **unstable**

Stability of periodic orbits

As for fixed points of the map

$$x_{n+1} = f^k(x_n)$$

$$\lambda = \frac{df^{k}}{dx}\Big|_{x=x_{i}^{*}}, \qquad x_{i}^{*} \in T^{(k)} = \{x_{0}^{*}, x_{1}^{*}, \dots, x_{k-1}^{*}\}$$

$$\frac{df^{k}}{dx}\Big|_{x=x_{0}} = f'(x_{k-1})f'(x_{k-2})\dots f'(x_{1})f'(x_{0}) = \prod_{i=0}^{k-1} f'(x_{i})$$

(chain rule of differentiation)

Bifurcations

Period doubling bifurcation

* If $f'(x^*;a^*)=-1$ then $f^{2'}(x^*;a^*)=1 \implies$ pitchfork bifurcation with period doubling

The logistic map

Fixed points

Period - 2

 $f'(x^{*1}) = 2 - r \implies f'(x^{*1})\Big|_{r=3} = -1 \longrightarrow \text{ period doubling } \text{ fixed point for } f^2$

$$f^{2}(x) = f(f(x)) = r[rx(1-x)][1-rx(1-x)] = r^{2}x(x-1)(rx^{2}-rx+1)$$

 $x^{*11}, x^{*12} \in R$ if $r \ge 3$

$$x^{*11}, x^{*12} = \frac{1 + r \pm \sqrt{r^2 - 2r - 3}}{2r}, r > 3$$

$$[f^{2}(x)']_{x=x^{*11}} = [f^{2}(x)']_{x=x^{*12}} = 4 + 2r - r^{2} = \begin{cases} |\cdot| < 1 & \text{if } 3 < r < 1 + \sqrt{6} \\ |\cdot| > 1 & \text{if } r > 1 + \sqrt{6} \end{cases}$$

$$|\cdot| > 1 \quad \text{if} \quad r > 1 + \sqrt{6}$$

$$x^{*11} = \frac{1}{2} \qquad \boxed{\frac{1 + r - \sqrt{r^2 - 2r - 3}}{2r}}_{2r} = \frac{1}{2} \implies r = 1 + \sqrt{5}$$

$$\oint \left[f^2(x)' \right]_{x=x^{*^{l^2}}, r=r_c} = 4 + 2r - r^2 \Big|_{r=1+\sqrt{6}} = -1 \quad \longrightarrow \quad \text{period doubling} \quad \longrightarrow \quad \text{fixed point for } f^4$$

Period – 4

 $\begin{aligned} & f^{4}(\mathbf{x}) = \\ r^{4} \times r^{4} x^{2} \cdot r^{5} x^{2} \cdot r^{6} x^{2} \cdot r^{7} x^{2} + 2 r^{5} x^{3} + 2 r^{6} x^{3} + 4 r^{7} x^{3} + 2 r^{8} x^{3} + 2 r^{9} x^{3} \cdot \\ r^{5} x^{4} \cdot r^{6} x^{4} \cdot 7 r^{7} x^{4} \cdot 7 r^{8} x^{4} \cdot 7 r^{9} x^{4} \cdot 6 r^{10} x^{4} \cdot r^{11} x^{4} + 6 r^{7} x^{5} + 10 r^{8} x^{5} + \\ 10 r^{9} x^{5} + 24 r^{10} x^{5} + 10 r^{11} x^{5} + 4 r^{12} x^{5} \cdot 2 r^{7} x^{6} \cdot 8 r^{8} x^{6} \cdot 8 r^{9} x^{6} \cdot 36 r^{10} x^{6} \cdot \\ 36 r^{11} x^{6} \cdot 22 r^{12} x^{6} \cdot 6 r^{13} x^{6} + 4 r^{8} x^{7} + 4 r^{9} x^{7} + 24 r^{10} x^{7} + 64 r^{11} x^{7} + \\ 52 r^{12} x^{7} + 36 r^{13} x^{7} + 4 r^{14} x^{7} \cdot r^{8} x^{8} \cdot r^{9} x^{8} \cdot 6 r^{10} x^{8} \cdot 61 r^{11} x^{8} \cdot 70 r^{12} x^{8} \cdot \\ 90 r^{13} x^{8} \cdot 28 r^{14} x^{8} \cdot r^{15} x^{8} + 30 r^{11} x^{9} + 60 r^{12} x^{9} + 120 r^{13} x^{9} + 84 r^{14} x^{9} + \\ 8 r^{15} x^{9} \cdot 6 r^{11} r^{10} \cdot 34 r^{12} r^{10} \cdot 90 r^{13} r^{10} \cdot 140 r^{14} r^{10} \cdot 28 r^{15} r^{10} + 12 r^{12} r^{11} + \\ 36 r^{13} x^{11} + 140 r^{14} x^{11} + 56 r^{15} x^{11} \cdot 2 r^{12} r^{12} \cdot 6 r^{13} r^{12} \cdot 84 r^{14} r^{12} \cdot \\ 70 r^{15} r^{12} + 28 r^{14} x^{13} + 56 r^{15} r^{13} \cdot 4 r^{14} r^{14} \cdot 28 r^{15} r^{15} r^{15} \cdot r^{15} r^{15} r^{16} \end{aligned} \end{aligned}$

Bifurcation diagram

		stable	unstable	R
Fixed point	<i>x</i> *=0	0 <r<1< td=""><td>r>1</td><td></td></r<1<>	r>1	
Fixed point	$x^* = \frac{r-1}{r}$	1< <i>r</i> < <i>R</i> ₁	<i>r</i> > <i>R</i> ₁	<i>R</i> ₁ =3
Period-2	$x_{1,2}^* = \frac{1 + r \pm \sqrt{(r-3)(r+1)}}{2r}$	<i>R</i> ₁ < <i>r</i> < <i>R</i> ₂	r>R ₂	$R_2 = 1 + \sqrt{6} \approx 3.4495$
Period-4	numerical	<i>R</i> ₂ < <i>r</i> < <i>R</i> ₃	<i>r</i> > <i>R</i> ₃	R ₃ ≈3.54409
Period-8				

Bifurcation diagram

Scaling Laws (vertically & horizontaly)

(Feigenbaum, 1978)

Logistic Map Bifurcation Diagram

Computation Formulas $(n \rightarrow \infty)$

$$r = \overline{r_n}: \text{ n-period supercycle } (\mathbf{x}_0 = 1/2)$$

$$d_1 = f\left(\frac{1}{2}; \overline{r_1}\right) - \frac{1}{2}, \quad d_2 = f^2\left(\frac{1}{2}; \overline{r_2}\right) - \frac{1}{2}, \quad \dots \quad , d_n = f^{2^{n-1}}\left(\frac{1}{2}; \overline{r_n}\right) - \frac{1}{2}$$

$$a \approx -\frac{d_n}{d_{n+1}} \implies a \approx -\frac{f^{2^{n-1}}\left(\frac{1}{2}; \overline{r_n}\right) - 1/2}{f^{2^n}\left(\frac{1}{2}; \overline{r_{n+1}}\right) - 1/2}$$

$$R_{\infty} - R_{n} \approx c \cdot \delta^{-n} \qquad (1)$$

$$R_{n} - R_{n+1} = (R_{n} - R_{\infty}) - (R_{n+1} - R_{\infty}) \approx^{(1)} - c \cdot \delta^{-n} + c \cdot \delta^{-(n+1)} = -c \delta^{-n} (1 - \delta^{-1}) \qquad (2a)$$

$$R_{n+1} - R_{n+2} = -c \delta^{-(n+1)} (1 - \delta^{-1}) \qquad (2b)$$

$$(2a) \& (2b) \Rightarrow \qquad \delta \approx \frac{R_{n} - R_{n+1}}{R_{n+1} - R_{n+2}}$$

$$\stackrel{\bullet}{\Rightarrow} \begin{array}{c} R_n - R_{\infty} \approx c \cdot \delta^{-n} \\ R_{n+1} - R_{\infty} \approx c \cdot \delta^{-(n+1)} \end{array} \implies \begin{array}{c} \frac{R_n - R_{\infty}}{R_{n+1} - R_{\infty}} \approx \delta \approx \frac{R_n - R_{n+1}}{R_{n+1} - R_{n+2}} \implies R_{\infty} \approx \frac{R_n R_{n+2} - R_{n+1}^2}{R_n - 2R_{n+1} + R_{n+2}} \end{array}$$

Supercycles

Which values of *r* provide *k*-periodic orbits that include $x_c = 1/2$?

Solve the equation $f^k(x=1/2, r) = 1/2$ Supercycle solutions

Supercycles are the "most stable" periodic orbits

$$f^{k}(x)'\Big|_{x=1/2} = f(x)'\Big|_{x_{0}=1/2} \cdot f(x)'\Big|_{x_{1}} \dots = 0 \in (-1,1)$$

Supercycles

Metropolis, Stein & Stein (1973)

3.2361	2	RL
3.4986	4	RLRL
3.6275	6	RLRRRL
3.7389	5	RLRRL
3.8319	3	RLR
3.8446	6	RLLRL
3.9057	5	RLLRL

Sharkovsky's ordering

 $3 \triangleright 5 \triangleright 7 \dots \quad \triangleright 2 \times 3 \triangleright 2 \times 5 \dots \triangleright 2^2 \times 3 \triangleright 2^2 \times 5 \triangleright \dots \quad \triangleright 2^n \times 3 \triangleright 2^n \times 5 \triangleright \dots \triangleright 2^n \triangleright \dots \triangleright 2^2 \triangleright 2 \triangleright 1$

Sharkovsky's theorem

if f has a periodic orbit of period k, then it must posses a periodic orbit of period m, for all m with $k \triangleright m$

• The logistic map possesses periodic orbits of all periods of the Sharkovsky's list

Chaos

Sensitivity to initial conditions

Arbitrary precision computations - 1000 digits

$$y_0 = x_0 + 10^{-A}, \qquad |y_n - x_n| > 0.01$$

<u>Πίνακας Ι:</u> Βήμα-χρόνος που η τροχιά με τη δεδομένη ακρίβεια αποκλίνει α τροχιά αναφοράς για διάφορες τιμές του r.

r= 3.64		r= 3.75		r= 3.88	
Ακρίβεια	Βήμα - Χρόνος	Ακρίβεια	Βήμα - Χρόνος	Ακρίβεια	Βήμα - Χρόνος
950	9726	950	6186	950	4852
900	9224	900	5913	900	4616
850	8732	850	5590	850	4376
800	8158	800	5233	800	4081
750	7658	750	4944	750	3844
700	7158	700	4645	700	3585
650	6652	650	4334	650	3324
600	6168	600	3992	600	3094
550	5664	550	3710	550	2837
500	5092	500	3294	500	2542
450	4616	450	2978	450	2314
400	4146	400	2665	400	2048
350	3636	350	2329	350	1841
300	3184	300	2005	300	1588
250	2622	250	1643	250	1289
200	2146	200	1345	200	1058
150	1664	150	1006	150	824
100	1160	100	702	100	570
50	698	50	400	50	322
10	194	10	97	10	90
5	188	5	97	5	90

Lyapunov exponent

For $\varepsilon \rightarrow 0$ and $N \rightarrow \infty$

$$\lambda = \lim_{N \to \infty} \frac{1}{N} \log \left| \left(\frac{\mathrm{d} f^N(x)}{\mathrm{d} x} \right)_{x=x_0} \right| \quad \Rightarrow \quad \lambda = \lim_{N \to \infty} \frac{1}{N} \log \left| \prod_{i=0}^{N-1} f'(x_i) \right| \quad \Rightarrow$$

$$\lambda(x_0) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \log |f'(x_i)|$$

 $\lambda < 0$: shrinking \rightarrow attraction $\lambda > 0$: expanding \rightarrow chaos

Lyapunov exponent for logistic map

Lyapunov exponent for logistic map

The 3-period window

Tangent bifurcations & intermittency

The decimal shift map

 $x_{n+1} = \sigma_{10}(x_n) = 10x_n \mod(1), \qquad x_n \in [0,1)$

a) the operation (mod 1)

 $x = 1,234567890123456.. \rightarrow x = 0,234567890123456..$

b) the operation $\times 10$

 $x = 1,234567890123456.. \rightarrow x = 12,34567890123456..$

c) Complete operation

 $x_0 = 0,123456789012345...$ $x_1 = 0.23456789012345?...$

The decimal shift map

$$x_{n+1} = \sigma_{10}(x_n) = 10x_n \mod(1), \qquad x_n \in [0,1)$$

Exponential divergence of initial conditions $x_{01} = 0,1234567890123456...$ $x_{02} = 0,1234567890123467...$ $(d = 10^{-15})$ $x_{11} = 0,234567890123456...$ $x_{12} = 0,234567890123467...$ $(d = 10^{-14})$ $x_{02} = 0,34567890123456...$ $x_{02} = 0,34567890123467...$ $(d = 10^{-13})$ $x_{91} = 0,0123456...$ $x_{92} = 0,0123467...$ $(d = 10^{-6})$

$$\lambda = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \log |f'(x_i)| = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \log(10) = \log(10)$$

some definitions

Let Y is a subset of X and a metric d(x,y). The following statements are equivalent :

- *1) Y* is **dense** in *X*
- 2) For any $x \in X$ and $\varepsilon > 0$, there exist $y \in Y$ such that $d(x,y) < \varepsilon$
- 3) For any $x \in X$, there exist a sequence $\{y_n\}$ in Y that converges to x.

An invariant map $f: X \to X$ is **transitive** if $\forall U \in X, V \in X, U \cap V = \emptyset$ $\Rightarrow \exists n \quad s.t. \quad U \cap f^n(V) \neq \emptyset$

*If $U \cap f^n(V) \neq \emptyset$ $\forall n > n_0 \implies mixing$

theorem : The map $f: X \rightarrow X$ is **transitive** if it has **a dense orbit**

An invariant map $f: X \rightarrow X$ possesses **sensitive dependence of initial conditions** if for any $x_0 \in X$ and $\varepsilon > 0$ there exist $\delta > \varepsilon$ and $y_0 \in X$ such that :

if $|x_0 - y_0| < \varepsilon$, $\exists k > 0$ such that $d(f^k(x_0), f^k(y_0)) > \delta$

examples

• $x_{n+1} = 2x_n$ $(x_n = 2^n x_0), \quad x \in \mathbb{R}$ Let $|x_0 - y_0| < \varepsilon$ and $\delta = 2^k \varepsilon, k > 0$ (so $\delta > \varepsilon$) $|f^n(x_0) - f^n(y_0)| = 2^n |x_0 - y_0| = 2^n \varepsilon > \delta \quad \forall n > k \quad \Rightarrow \quad \text{Sensitivity to}$ initial conditions Let $U = (3,4), \quad V = (0,1), \text{ if } x_0 \in U \text{ then}$ $x_n \in U' = (3 \cdot 2^n, 4 \cdot 2^n) \text{ and } U' \cap V = \emptyset \quad \Rightarrow \quad \text{no transitivity}$

examples

- $x_{n+1} = x_n + c \mod(1), x, c \in R, 0 < c < 1, x_n = x_0 + nc \mod(1)$
 - $c = \frac{m}{k} \in Q \implies x_k = x_0 + m \mod(1) \implies x_k = x_0 \qquad \text{periodic trajectory}$ if $|x_0 - y_0| = \varepsilon \implies |x_k - y_k| = |x_0 - y_0| = \varepsilon \qquad \text{no sensitivity to initial conditions}$

u)
$$c \in R \setminus Q$$
. Let $|c - \frac{m}{k}| < \varepsilon' \implies |kc - m| < k\varepsilon' = \varepsilon$
 $x_k = x_0 + kc \mod(1) = x_0 + kc - m \mod(1) \implies |x_k - x_0| < \varepsilon$
 $|x_k - x_0| = |x_{2k} - x_k| = \dots < \varepsilon$

dense trajectory no sensitivity to initial conditions

The Bernoulli Shift and Symbolic Dynamics

 $\sigma(x)$

1

X

 $x_{n+1} = \sigma(x_n) = 2x_n \mod 1, \qquad x_n \in [0,1)$ $x = a_0, a_1 a_2 a_3 \dots a_N a_{N+1} \dots , \quad a_i \in \{0,1\}$

or

$$\Sigma = \left\{ \{a_n\}_{n=0}^{\infty} : a_n = 0 \text{ or } 1 \right\}$$

e.g. {0}, {1}, {01}, {10}, {101, {01011}, {01011}, {100110110}} \in \Sigma

• Distance between $x = \{x_0, x_1, x_2, ...\} \in \Sigma$ and $y = \{y_0, y_1, y_2, ...\} \in \Sigma$

$$d(x, y) = \sum_{i=0}^{\infty} \frac{|x_i - y_i|}{2^i}$$

• The shift map

 $\sigma: \Sigma \to \Sigma, \qquad \sigma(\{a_0 a_1 a_2 \dots\}) = \{a_1 a_2 a_3 \dots\}$

Three properties of the shift map

 $\sigma: \Sigma \to \Sigma, \qquad \sigma(\{a_0 a_1 a_2 \dots\}) = \{a_1 a_2 a_3 \dots\} \qquad \Sigma = \{\{a_n\}_{n=0}^{\infty}: a_n = 0 \text{ or } 1\}$

1. Periodic orbits are dense in Σ

Let $s = \{a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, \dots, a_{n}, a_{n+1}, \dots\}$ any sequence of Σ .

We construct the following periodic orbits

$$p_1 = \{a_0, a_0, a_0, \dots\} = \{a_0\} \rightarrow d(p_1, s) \le 2^{-1}$$
$$p_2 = \{a_0 a_1 a_0 a_1, \dots\} = \{\overline{a_0 a_1}\} \rightarrow d(p_1, s) \le 2^{-2}$$

$$p_n = \{a_0 a_1 a_2 \dots a_n, a_0 a_1 a_2 \dots a_n, \dots\} = \{\overline{a_0 a_1 \dots a_n}\} \rightarrow d(p_n, s) \le 2^{-n}$$

.....

Three properties of the shift map

 $\sigma: \Sigma \to \Sigma, \qquad \sigma(\{a_0 a_1 a_2 \dots\}) = \{a_1 a_2 a_3 \dots\} \qquad \Sigma = \{\{a_n\}_{n=0}^{\infty}: a_n = 0 \quad \text{or} \quad 1\}$

2. The shift map is **transitive** or, equivalently, it has one dense orbit in $\boldsymbol{\Sigma}$

We construct the following sequence that belongs to $\boldsymbol{\Sigma}$

$$S^* = \{ \begin{array}{cc} 01 & 00 & 011011 & 000 & 001 & 010 & 100 & 0011 \\ \text{singles} & \text{doubles} & \text{triples} \end{array} \}$$

i.e. s^* contains segments of all possible elements of Σ with length n and, consequently,

 $\forall s \in \Sigma, \forall k \exists n \text{ such that } d(f^n(s^*), s) \leq 2^{-k}$

Three properties of the shift map

$$\sigma: \Sigma \to \Sigma, \quad \sigma(\{a_0 a_1 a_2 \dots\}) = \{a_1 a_2 a_3 \dots\} \quad \Sigma = \{\{a_n\}_{n=0}^{\infty}: a_n = 0 \text{ or } 1\}$$

3. The shift map is sensitive to initial conditions

٠

$$x_{0} = a_{0}a_{1}a_{2}...a_{k}a_{k+1}a_{k+2}.... \qquad y_{0} = a_{0}a_{1}a_{2}...a_{k}b_{1}b_{2}.... \qquad (b_{1} \neq a_{k+1}) \qquad d(x_{0}, y_{0}) = 2^{-k}$$

$$x_{1} = \sigma(x_{0}) = a_{1}a_{2}...a_{k}a_{k+1}a_{k+2}.... \qquad y_{1} = \sigma(y_{0}) = a_{1}a_{2}...a_{k}b_{1}b_{2}.... \qquad d(\sigma(x_{0}), \sigma(y_{0})) = 2^{-k+1}$$

$$x_{2} = \sigma^{2}(x_{0}) = a_{2}...a_{k}a_{k+1}a_{k+2}.... \qquad y_{2} = \sigma^{2}(y_{0}) = a_{1}a_{2}...a_{k}b_{1}b_{2}.... \qquad d(\sigma^{2}(x_{0}), \sigma^{2}(y_{0})) = 2^{-k+2}$$

Lyapunov exponent
$$\lambda = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \log |\sigma'(x_i)| = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \log(2) = \log(2)$$

Devaney's definition of chaos

An invariant map $f: X \rightarrow X$ is **chaotic** if it has the following properties

- **1.** The map is transitive in an invariant set *S* if
- **2.** The periodic orbits of the map form a dense set in *S*
- **3**. The map possesses sensitivity in initial conditions.
- The shift map σ is chaotic
- Any map $f: X \rightarrow X$ which is **topologically conjugate** to σ is chaotic

>> A map $f: X \rightarrow X$ is topologically conjugate to the map $g: Y \rightarrow Y$ if there exist a homeomorphism $h: X \rightarrow Y$ such that

$$f(h(x)) = h(g(x))$$
 or $g(x) = h^{-1}(f(h(x)))$

The logistic map for *r*=4

$$x_{n+1} = 4x_n(1 - x_n)$$

$$x = \frac{1 - \cos(\pi\theta)}{2}, \quad 0 \le \theta \le 1$$

$$\frac{1 - \cos(\pi \theta_{n+1})}{2} = 4 \frac{1 - \cos(\pi \theta_{n+1})}{2} \left(1 - \frac{1 - \cos(\pi \theta_{n+1})}{2} \right) \implies 1 - \cos(\pi \theta_{n+1}) = 2 - 2\cos(\pi \theta_n)$$

$$\Rightarrow \cos(\pi \theta_{n+1}) = \cos(2\pi \theta_n) \qquad \Rightarrow \qquad \theta_{n+1} = 2\theta_n \bmod(1)$$

• The logistic map for *r*=4 is conjugate to the shift map, hence is chaotic

Universal behavior of quadratic maps

A continuously differentiable map f which

- 1) maps the interval [*a*,*b*] to itself
- 2) It has a single maximum in [*a*,*b*]
- 3) The Schwartzian derivative is negative in whole interval [*a*,*b*]

displays an infinite sequence of period doubling bifurcations with the same constants a and δ .

 $S_{f}(x) = \frac{f''(x)}{f'(x)} - \frac{3}{2} \left(\frac{f''(x)}{f'(x)} \right)^{2}$

maps for exercise

$$x_{n+1} = r + x_n - x_n^3$$
$$x_{n+1} = rx_n e^{-x_n}$$
$$x_{n+1} = r\cos(\pi x_n)$$